0
1
2

1
1
1
13
14
15

5

(S

3
+
5

Plotting

Carver J. Bierson

June 30, 2017

The standard tool for plotting in python is matplotlib. matplotlib is a pow-
erful tool and we will only cover some what it has to offer in this class. There
are two main ways of using matplotlib. One is more of a function based method
that T will show while the other is more object based. Both are acceptable on
assignments.

1 Making basic plots

To start lets plot a basic sin curve

import numpy as np
import matplotlib.pyplot as plt

#make some data
x=np. linspace (0,2%np. pi)
y=np. sin (x)

Create figure
plt . figure ()

#plot data in figure
plt.plot (x,y)

#show all figures
plt .show ()

If you want to set the x or y axis limits you can use plt.zlim([zmin,zmax])
where zmin and zmaz are the values for the minimum and maximum x values.
If you want the axes to automatically shrink to your data limits you can use
plt.azxis(tight’).

Often we will have multiple data sets we want to plot against one another.
You should also add axis labels and a legend.

import numpy as np
import matplotlib.pyplot as plt

#make some data
x=np.linspace (0,2%np. pi)
ysin=np. sin (x)

ycos=np. cos (x)

Create figure
plt.figure ()

2 #plot data in figure
3 plt.plot(x,ycos, —k’, label="cos(x)")

))

14+ plt.plot(x,ysin, ’.r’, label="sin(x)")
15

16 plt.xlabel(’x (radians)’)
17 plt.ylabel(’y’)

18

19 plt.legend ()

20

21 #show all figures
2 plt.show ()

[SE I

Instead of plotting our data on top of one another we could plot it on two
axes in the same figure.

import numpy as np
import matplotlib.pyplot as plt

#make some data
x=np.linspace (0,2%np. pi)
6 ysin=np.sin (x)
7 ycos=np.cos(x)

o # Create figure
10 plt.figure ()

1
>

¢+ plt.subplot(2, 1, 1)
5 plt.title(’cos(x)’)
16
17 plt.plot(x,ycos,’—k’, label="cos(x)’)
15 plt.ylabel(’y’)
19
20 plt.subplot (2, 1, 2) #make 2nd pannel active

1
22 plt.title (’sin(x)’)

1
1
13 # The subplot syntax is: # of columns, # of rows, active subaxis
1
1

plt.plot (x,ysin, ’.r’, label=’sin(x)’)

RN

plt . xlabel (’x (radians)’)
7 plt.ylabel(’y’)

SN N NN NN NN N

#show all figures
31 plt.show ()

You can set the axis range to custom values using the plt.zlim and plt.ylim
functions. If you want to add text to a plot use plt.text(z,y, ’string’). It usually
takes some trial and error to get the text where you want on a figure. There
are other plotting commands for a plot with errorbars, a pure scatter plot,
histogram, etc. All of these though have basically the same syntax as the basic
plot command. See the documentation for specifics on any particular function.

2 2D and 3D data

Lets say we have a 2D field of data (like temperature across a surface). There
are several ways of plotting this data. The simplest is to make a contour plot.

1 import numpy as np
2> import matplotlib.pyplot as plt
3

. # Make 1D grid vectors
5 x=np.linspace(—2%np.pi,2*np.pi)
¢ y=np.linspace(—2+np.pi,2*np.pi)

s # Make these 2D grid arrays
9 xx,yy=np.meshgrid (x,y)

11 #Create some data to plot
12 T = np.sqrt (xx*x*x2 + yy*x2)
13 phi = np.arccos(x/r)

15 z1 = np.sin(2*r) / r

17 # Create figure
15 plt.figure ()

20 #plot data in figure
1 plt.contour (xx,yy,zl)

3 # Make x and y spacing equal (gets rid of stretching)
1+ plt.gca().set_aspect(’equal’)

6 # Label axes
7 plt.xlabel(’x")
s plt.ylabel(’y’)

30 # Make another figure with custom contours
31 plt.figure ()

33 plt.contour(xx, yy, zl, np.arange(—0.4, 2.0, 0.1))

36 # Make a third figure with labeled contours
37 plt.figure ()

30 ¢s = plt.contour(xx, yy, zl, np.arange(—0.4, 2.0, 0.4))

i1 plt.clabel (cs)

14 #show all figures
5 plt .show ()

But what if you don’t just want contours, you want some color in your life.
There are a few functions to choose from. The first is filled contours, contourf.
It has the same syntax a contour so I won’t show an example of that one (try
it on your own). My perfered 2D plotting function is pcolor because I think it
is the most flexable. That said for some applications it may be better to use
imshow.

import numpy as np
import matplotlib.pyplot as plt

Make 1D grid vectors
x=np.linspace(—2#np.pi,2*np. pi)
¢ y=np.linspace(—2+np.pi,2*np.pi)

S o R N

s # Make these 2D grid arrays
9 xx,yy=np.meshgrid (x,y)

10

11 #Create some data to plot
12 T = np.sqrt (xx**2 + yy**2)

16

17

phi = np.arccos(x/r)
z1 = np.sin(2xr) / r

Create figure
plt.figure ()

#plot data in figure
plt.contour (xx,yy,zl)

Make x and y spacing equal (gets rid of stretching)
plt .gca().set_aspect(’equal’)

; # Label axes

plt.xlabel (’x")
plt.ylabel(’y’)

#Plot heatmap with pcolor
plt . pcolor (xx,yy zl)

plt.colorbar () #show the colorbar

#show all figures
plt .show ()

You may also want to change the colormap. For a list of built in col-
ormaps in python see https://matplotlib.org/examples/color/colormaps_
reference.html. To change the color map you are using you can either pass it
as an optional argument for pcolor or use

plt.set_cmap ('bwr’)

2.1 3D plots

3D plots can make great visuals but can also be more confusing than their 2D
counterparts so use them with caution. You can do line and scatter plots in
3D but I will show surface plots. If you want to see all of the options look
at https://matplotlib.org/mpl_toolkits/mplot3d/tutorial.html. I will
also note that for 3D you must (to my knowlage at least) use the object oriented
syntax of pyplot (shown below).

import numpy as np
import matplotlib.pyplot as plt

from mpl_-toolkits.mplot3d import Axes3D # This gives us access to
the 3D plots

Make 1D grid vectors
x=np.linspace(—2*np.pi,2*np.pi,100)
y=np.linspace(—2*np.pi,2*np.pi,100)

Make these 2D grid arrays
xx,yy=np.meshgrid (x,y)

#Create some data to plot
r = np.sqrt (xx**2 4+ yy#**2)
phi = np.arccos(x/r)

https://matplotlib.org/examples/color/colormaps_reference.html
https://matplotlib.org/examples/color/colormaps_reference.html
https://matplotlib.org/mpl_toolkits/mplot3d/tutorial.html

N N

19

20

w o=

z1 = np.sin(2xr) / r

Create figure
plt. figure ()
ax=plt.gcf().add_subplot (111, projection=’3d")

3 #plot data in figure

ax.plot_surface (xx,yy,zl)

; # Make x and y spacing equal (gets rid of stretching)

Label axes

ax.set_xlabel(’x7)
ax.set_ylabel (’y’)
ax.set_zlabel(’z7)

plt.colorbar () #show the colorbar

#show all figures
plt .show ()

3 Making Simple Movies

In this class we will be looking at lots of systems that evolve with time and it
is nice to be able to plot that evolution. As and example lets plot a sin wave
with a constant phase speed.

import numpy as np
import matplotlib.pyplot as plt

k=1.0 # Define wavenumber

s w=1.0 # Define angular frequency

tmax=10 # end time

dt=0.1 # timestep

x=np.linspace(—2*np.pi, 2*np.pi,500) # x—grid
plt. figure ()

t=0 # start time
while t<tmax:
plt.cla() # clear the last figure
plt.plot(x, np.sin(k*xt+wxt)) #plot wave equation

plt .pause(0.05) # update plot and wait 0.05 sec before moving
on
t+=dt # increment time

Movies like this can also be save by making a list of figure frames. There
animation objects can also be saved. They also have of the advantage that they
will repeat continuously.

import numpy as np
import matplotlib.pyplot as plt

import matplotlib.animation as animation # load animation module

k=1.0
w=1.0
tmax=10

dt=0.1
x=np.linspace(—2*np.pi, 2+np.pi,500)

figl=plt.figure ()

plt.ylim ([-1,1])

plt . xlim ([—2%np.pi, 2*np.pi])
#plt .show ()

ims=[] #make empty list for frames
t=0
while t<tmax:

#plt.plot (x, np.sin (kxxtwkt))
ims.append ((plt.plot(x, np.sin (k*xtwxt)))) #add frame to list
plt.cla() # clear figure

plt .pause(0.05) # not really needed here
t+=dt

im_ani = animation.ArtistAnimation (figl , ims, interval=50,
repeat_delay=1000,
blit=True) #make animation

7 plt .show () # show animation

#im_ani.save (’wave.mpd’) #save animation (does require an encoder
which your computer probably already has)

4 In Class Problem:

Potential fields (electrostatic, gravitational, or otherwise) are great because they
are scalar fields that can be linearly summed. Lets plot the potential filed of
the Earth - Moon system assuming the Earth and Moon are both point masses.
The gravitational potential of a point mass is
GM
V=- (1)

r

Some values you will need are Mgarin = 6 x 1024 kg, Maroon = 7 x 10?2 kg,
and the distance between the Earth and Moon is 3.8 x 108 m. Hint: First plot
the potential for the Earth, then the moon, then their sum.

Can you identify the 5 Lagrange points from your figure?

Bonus: Plot the potential as the moon orbits around the Earth (For now
assume a circular orbit).

	Making basic plots
	2D and 3D data
	3D plots

	Making Simple Movies
	In Class Problem:

