
ODEs

Carver J. Bierson

July 18, 2017

Almost all of the most descriptive equations are differential equations. In
many cases, as is a recurring theme, these equations can not be solved analyti-
cally either because of the form of the equations or their boundary conditions.
We will start by solving a first order differential equation, i.e.,

df(t)

dt
= g(t, f) (1)

where g can be any function of f and t. A more concrete example is

df(t)

dt
= t2 (2)

When we have a differential equation like those above we want to solve for is
f(t), given some initial state. To do this we will take the equation and put it in
terms we can evaluate numerically. Conceptually derivatives describe the slope
of a curve or equivalently, how much f(t) changes per a change in t. Given this
we will approximate df(t)/dt as ∆f(t)/∆t. Now we can rearrange our equation
to be

∆f(t) = t2∆t (3)

If we know f(0) we can walk our way through time in steps of ∆t, updated our
knowledge of f(t) as we go. We can write this out is stensil form as

f(ti+1) − f(ti) = t2i ∆t (4)

where the i subscript indicates which step in this process we are on. Here is
what that looks like in python assuming f(0) = 5. In this case we also know
the analytic solution so I will plot that as well

1 import matp lo t l i b . pyplot as p l t
2 import numpy as np
3

4 #f ’ (t)=t ˆ2
5 de f d fdt (t) :
6 r e turn t ∗∗2
7

8 dt=1.5 # Our time step (s)
9

10 t=0 # our i n i t i a l time
11 t max=20 # The time we want to f i nd our s o l u t i o n at
12

13 f=np . array ([5]) # f (0)=5
14 i=0
15

1

16 whi le t<=t max :
17 i+=1# index where we are in our array
18

19 # make the array f l a r g e r by one value to s t o r e our new value
20 f=np . append (f , 0 . 0)
21 # ca l c u l a t e our new f (t+dt) va lue
22 f [i]= dfdt (t) ∗dt+f [i −1]
23 # increment time
24 t+=dt
25

26 # crea t e a time array to p l o t aga in s t
27 t ime a r r=np . arange (0 , t+dt , dt)
28

29 # Plot r e s u l t
30 p l t . f i g u r e ()
31

32 p l t . p l o t (t ime arr , 5 .0+1/3.0∗ t ime a r r ∗∗3 .0 ,
33 l a b e l=’ Analyt i c So lu t i on ’)
34 p l t . p l o t (t ime arr , f , ’ r−∗ ’ , l a b e l=’ Numerical So lu t i on ’)
35

36 p l t . x l ab e l (’ t ’)
37 p l t . y l ab e l (’ f (t) ’)
38 p l t . l egend ()
39

40 p l t . show ()

You will notice in the plot that our numerical solution underestimates the true
solution. The smaller you make dt, smaller the error in our solution will be.

The above method is known as a forward Euler solver. This is the simplest
ODE solver and is good enough for many applications, but it is far from the
best.

1 Higher order derivatives

Lets consider the classics second order derivative for the position of a mass on
a spring.

d2x

dt2
= − k

m
x (5)

We can write this as two ordinary differential equations via

dx

dt
= v (6)

dv

dt
= − k

m
x (7)

Note that in this cases as long as we know the initial state (position and ve-
locity) we can solve for the state at any future time. This set is known a set
of coupled ODEs because their equations depend on one another. Solving sets
of coupled ODEs allows us to solve many complex systems including multiple
springs connected in series.

2 Using the scipy integrator

Scipy contains a general ode integrator called odeint.

2

1 import matp lo t l i b . pyplot as p l t
2 import numpy as np
3

4 import s c ipy . i n t e g r a t e as i n t eg
5

6 # de f i n e our d i f f e r e n t i a l equat ion
7 de f s p r i n g d e r i v s (xv , t , k , m) :
8 x = xv [0]
9 v = xv [1]

10 dxdt = v
11 dvdt = −(k/m) ∗x
12 r e turn ([dxdt , dvdt])
13

14

15 # de f i n e cons tant s
16 m=1.0 # km
17 k=2.0 # N/m
18

19 # de f i n e i n i t i a l s t a t e
20 xv0=[1 ,0] # x=1 m, v=0 m/ s
21

22 # Make an array o f t imes to s o l v e at
23 t=np . l i n s p a c e (0 ,20 ,100)
24

25 # now we can pass t h i s to ode int v ia
26 output = in t eg . ode int (s p r i n g d e r i v s , xv0 , t , a rgs=(k , m))
27

28 #output now conta in s the so lved va lue s f o r x and v at each t in
each column

29 x=output [: , 0]
30 v=output [: , 1]
31

32 # plo t the r e s u l t s
33 p l t . f i g u r e ()
34

35 p l t . p l o t (t , x , l a b e l=’x (m) ’)
36 p l t . p l o t (t , v , l a b e l=’ v (m/ s) ’)
37

38 p l t . x l ab e l (’ t ’)
39 p l t . l egend ()
40

41 p l t . show ()

3 In Class Problems

• Compare the odeint result to the analytic result for the integral of t2.

• Trying including a damping force (fd = −cvv) to the spring system and
compare the output.

• In the case where there is damping, eventually the spring comes to rest.
Compute the total distance traveled by the spring in the limit of time
going to infinity. In practice, you can truncate the integration after a very
long time. Hint: total distance traveled is the integral of the absolute
value of the velocity, so take your velocity output by the ODE solver, take
its absolute value, and then integrate.

• Choose values of k and m, and then repeat part the previous problem for
a range of different values of cv. Make a plot of distance traveled versus

3

cv. You should find that the function decreases from infinity at cv = 0 to
1 as cv approaches infinity, but that there is a special value of cv above
which the distance traveled is about constant. What is this value of cv,
and what is its physical significance?

4

	Higher order derivatives
	Using the scipy integrator
	In Class Problems

