Basic Python

Carver J. Bierson

June 26, 2017

1 Why Python

On GitHub (the major code repository on the internet) Python is the third most
language. The two languages higher than Python, Java and JavaScript, are not
as well suited to scientific applications as Python. Because of its popularity there
are many libraries that you can take advantage of (why write code someone else
has already done). Python is also used extensively in industry (Google’s tensor
flow machine learning software has a Python interface).

1.1 When to use Python

Programming languages are tools and you need to know when a language is the
right tool for the job. Python is a easy language to program in but the trade off
is that it is fairly slow at executing code. Generally your time is more valuable
than the computers. I generally prototype large codes in python, then translate
them to a more efficient language (C, C++, Fortran). Near the end of the class
we may compare the speed of using a pure python program vs having python
call a compiled program.

1.2 Python 2.7 or Python 3.6

About ten years ago Python 3 came out. Python 3 has many advantage over
Python 2 but is not backwards comparable (you can’t always run python 2 in
python 3. Because of this many groups still have not fully converted to python
3 (for the same reason I still get code from collaborators in Fortran 77). For
what we do in this class you probably won’t notice any difference (except the
print statements are a little different). I will accept assignments in either
version but you must always specify in the comments which version
you used! I recommend learning python 3 but the choice is yours.

2 Python as a calculator

>>> 5%2
10
>>> 542
7
>>> 4/2
2

>>> 5/2

2

>>> 5.0/2.0
2.5

>>> 142%3

7

>>> (142)*3
9

>>> 3k k2

9

>>> 9kl /2

4

>>> 9xx(1/2)
1

>>> 9x%x%(1.0/2.0)
3.0

>>> cos (0)

Traceback (most recent call last):
File "<stdin >", line 1, in <module>
NameError: name ’'cos’ is not defined

Core python has basic mathematical operations but for functions like cosine we
will use libraries.

The two main libraries we will use in this class are numpy (numerical python)
and matplotlib (plotting). You can load libraries like

>>> import numpy as np

Here numpy is the library name and I am calling it np for later use. After this
I can do

>>> np.cos (0)
1.0

You may see some places use
>>> from numpy import x

This makes it so you do not have to use the np prefix when you want to use
those functions. The danger with this method is if you load 2 libraries with
the same function name (or you have a function with that name) it becomes
ambiguous which one you are using. You won’t lose points in this class for doing
this but you may have bugs that are very hard to find!

3 Variables and Data Types

Variables are a way of storing information in memory for later use. Variable
names must start with a letter but can also contain numbers and underscores
(technically they can start with underscores as well but that has more mean-
ing). Variable names are case sensitive. I highly recommend using meaningful
variable names in your programs (call it ” Temperature” not ”T”).

In programming a =sign indicates you are assigning a value to a variable.

Think of

>>>> a=4
as a + 4. Note that 4 = a makes no sense because 4 cannot be a variable.

>>> a=4
>>> a
4
>>> 4=a
File "<stdin >", line 1
SyntaxError: can’t assign to literal
>>> b=a+5
>>> b
9
>>> a=a-+d
>>> a
9
>>> b
9
>>> type(a)
<type ’int’>

Variables have types that denote what kind of information they contain
List of common data types:

e int -integers

e float - decimal point numbers

e string - a set of characters

e dict - a variable that uses keywords to reference values
e list - a group of values

e array - Similar to a list but designed for mathematical problems

>>>> type(c)
<type ’float’>
>>> d= '] am a string’

>>> d
'l am a string’
>>> d+’hi’

)

T am a stringhi

Strings can be defined with either ’ or ” in python. Strings can be comined with
a simple +.

>>> TestList=[9,8,7,” hi”]
>>> type(TestList)

<type ’list’>

>>> TestList

[9, 8, 7, ’"hi’]

>>> TestList [0]

9

>>> TestList [3]

7hi7

>>> TestList[—1]
7hi7

>>> TestList [1:3]
(8, 7]

>>> TestList [1: —1]
(8, 7]

>>> TestList [1:]
[8, 7, ’hi’]

>>> TestList+1
Traceback (most recent call last):
File "<stdin >”, line 1, in <module>
TypeError: can only concatenate list (mot ”"int”) to list

Lists do not have to all contain the same type of data. Each element of a list
can be accessed via an index starting with 0. You can also access a group of
elements using start:end, where the end index is not included. You can also
use negative indicates to reference from the end of the list. Note because lists
can contain different data types you can’t perform normal operations on them.
Lists can also have some unexpected behavior if you are not careful!

>>> weird=TestList
>>> weird [0]=5

>>> weird

[5, 8, 7, "hi’]
>>> TestList
[5, 8, 7, ’hi’]

>>> TestDict={"Number’:5, ’Name’:’ John’}
>>> TestDict [’Number]

)

>>> TestDict . keys ()

[’Number’, ’Name’]

Dicts are similar to lists only instead of referencing each value with an index,
you find them with a key.
The primary data type we will use in this class is arrays.

>>> test_arr=np.array ([4,5,6])

>>> test_arr [0:2]

array ([4, 5])

>>> test_arr [3]

Traceback (most recent call last):
File "<stdin >”, line 1, in <module>

IndexError: index 3 is out of bounds for axis 0 with size 3

>>> test_arr [2]

6

>>> test_arr=test_arr+1
>>> test_arr

array ([5, 6, 7])

Array elements can be accessed like lists. They can also have mathematical
operations act on them (assuming all elements are numbers).

4 Some helpful functions

e range(stop), range(start,stop[,step]): range creates a list of integers.
Note that range is non-inclusive on the stop value. This is often used for
loops (next lecture).

>>> range(5)
[0, 1, 2, 3, 4]
>>> range (1,5)

[1’ 27 3, 4]
>>> range(1,5,2)
(1, 3]

e len(object): len will return the length of a list or array passed to it.

>>> a=range (2,5)

>>> a

[2, 3, 4]
>>> len(a)
3

e np.arange(stop), np.arange(start,stop[,step]): Same as range only
returns an array instead of a list and can handle non-integer values.

>>> range(5)
[0, 1, 2, 3, 4]

e np.linspace(start,stop[,num=>50]): Creates an array from start to stop
(inclusive) with num values. By default num=50. This is one of the best
ways to setup arrays.

>>> np.linspace (2,5)

array ([2. . 2.06122449, 2.12244898, 2.18367347,
2.24489796,

2.30612245, 2.36734694, 2.42857143, 2.48979592,
2.55102041,

2.6122449 | 2.67346939, 2.73469388, 2.79591837,
2.85714286,

2.91836735, 2.97959184, 3.04081633, 3.10204082,
3.16326531,

3.2244898 | 3.28571429, 3.34693878, 3.40816327,
3.46938776,

3.53061224, 3.59183673, 3.65306122, 3.71428571,
3.7755102

3.83673469, 3.89795918, 3.95918367, 4.02040816,
4.08163265,

4.14285714, 4.20408163, 4.26530612, 4.32653061,
4.3877551

4.44897959, 4.51020408, 4.57142857, 4.63265306,

4.69387755,
4.75510204, 4.81632653, 4.87755102, 4.93877551,

5. 1

>>> np.linspace (2,5,5)

array ([2. , 2.75, 3.5 , 4.25, 5.])

np.logspace(start,stop[,num=50]): Save as linspace only values are
evenly spaced on a log scale (as opposed to a linear scale).

>>> np.logspace (2,5,5)
array ([100. , 562.34132519, 3162.27766017,
17782.79410039, 100000. 1

np.pi, np.e, np.exp: Numpy also includes values for m and e. However
you should use np.ezxp(value) over e**value for both readability and speed.

>>> np. pi
3.141592653589793
>>> np.e
2.718281828459045
>>> np.exp (1)
2.7182818284590451

shape method: In python all variables are objects that have attributes
and methods (for this class we will mostly ignore this side of python). One
of the most helpful attributes is shape which gives the size of a ndarray
in each direction.

>>> a=np.linspace (2,5,5)

>>> a.shape

(5,)

>>> test=np.array ([[1,2,3],[4,5,6],[7,8,9]])
>>> test.shape

(3, 3)

	Why Python
	When to use Python
	Python 2.7 or Python 3.6

	Python as a calculator
	Variables and Data Types
	Some helpful functions

