oW

Numerical Integration

Carver J. Bierson

July 11, 2017

Like in root finding, not all integrals have analytic answers. There are two
main cases we will look at here. The first is you have a function with a known
form and the second is when you just have data points (or function evaluations).

As an example we may want to know the fraction of the Sun’s energy radiated
in the visible part of the solar spectrum. The amount of energy as a function
of wavelength is given by

2hc? 1
By =)b (ehc/)\kT _ 1) (1)

where \ is the wavelength, h is Planck’s constant, k is Boltzmann’s constant,
c is the speed of light, and T is the temperature. Stating our above question
mathematically,

700nm
f — J400nm B)‘dA

1S BadA

The bottom integral can be done analytically but the top one cannot.

(2)

1 Midpoint and Quadrature

The easiest to understand form of numerical integration is using the midpoint
rule you may have learned in intro calculus. The idea is simply to evaluate
our function at a series of points across the domain. This is also called the
rectangle method as we are just summing the area of rectangles. We can write
this mathematically as

b b—a o
[a3 stw 3)

The more points we evaluate evaluate our function at (larger N) the better
estimate we will get.

We can make this method one step better by summing trapezoids instead of
rectangles. This method is called trapezoidal rule. There are two main functions
that use this method. One is for when you have a function (quad) and the other
if for when you have data(trapz).

import matplotlib.pyplot as plt
import numpy as np

[CENCENCENN]

[CEN)
o

> N
~

import scipy.optimize as opt
import scipy.integrate as integ

define our function

def B_lmb(wavelength):
Plank function
Returns values in units of W/m"2 nm"—1 sr"—1
wavelength given in nm
Calculates the power power per wavelength
h=6.626E—34 # Plank’s constant (J/s)
c=2.9979E8 # speed of light (m/s)
k= 1.380065E—23 # Boltzmann’s constant (J/K)
T= 5777 # Temperature of the sun (K)
wavelength=wavelength*x1E—9
return (1IE—9*2xhxc**2/wavelength *x5x%

(1.0/(np.exp(h*c/(wavelength«k«T))—1)))

integrate
the quad function retruns both the result and an estimate of the
error

VisE, VisErr=integ.quad(B-lmb, 400, 700)

we can use infinity as a limit

Because this function peak sharply at small values I have split
it in two

Try doing it all at once to see the result

AllE, AllErr=integ.quad(B.lmb, 0, np.Inf)

print (VisE/AIlIE)

Note that here I had the user input the wavelength in nanometers and then
convert it to meters. This has no effect when setting limits in quad however
when integrating from 0 <> co quad is more stable if range of interest is between
1 — 10* instead of 1072 — 10~°.

The sun is well approximated by the Plank function, but that does not take
into account the spectral features of the sun. We can try to estimate the same
integrals using data of the suns spectrum.

import numpy as np
import scipy.integrate as integ

filename="DataFiles /ASTMGIT3. csv ’
Data=np.loadtxt (filename ,skiprows=2,delimiter=",")

wvl= Data[:,0] # wavelength in nm
Energy = Data[:,1] # Energy at the Earth above the atmosphere (W/(m
"2 nm))

AllE = integ.trapz (Energy, x=wvl) # integrate over all wavelengths
in file

wl-max=700 # nm

wl_min=400 # nm

Vis_index = np.logical_and (wvl>=wl_min, wvl<=wl_-max) # Setup
logical index for visible range

VisE = integ.trapz(Energy [Vis_index | ,x=wvl[Vis_index])

; print (VisE/AIIE)

These methods differ in their answers by ~ 3% (check for yourself) but both

agree that ~40% of the sun’s light is in the visible range.

2 Monte-Carlo

If you have a function, you can also estimate the integral of that function using a
set of random numbers. To do this we do need to know the limits of integration,
and the limits of the function on that domain. The general idea here is to
randomly throw points within a square domain (in x and y) You can tally how
many of those points fall below your curve and how many are above. This gives
an estimate for the fraction of that domain that is occupied by your function
It is easy to calculate that area of the box, and from that you get the area

occupied by your function. Below is an example

import matplotlib.pyplot as plt
import numpy as np

import numpy.random as rnd

import scipy.optimize as opt
import scipy.integrate as integ

import time # for checking speed

define our function

s def B_lmb(wavelength):

Plank function

Returns values in units of W/m"2 nm"—1 sr"—1

wavelength given in nm

Calculates the power power per wavelength

h=6.626E—34 # Plank’s constant (J/s)

c=2.9979E8 # speed of light (m/s)

k= 1.380065E—23 # Boltzmann’s constant (J/K)

T= 5777 # Temperature of the sun (K)

wavelength=wavelength*x1E—9

return (1IE—9x2xh*cxx2/wavelength 5%
(1.0/(np.exp(h*c/(wavelengthxk«T))—1)))

plot up function
Plotx=np. linspace (0,5000,100)

plt.figure ()
plt.plot (Plotx, B_lmb(Plotx), ’k’)

Ndarts=int (1E4) # number of mote—carlo darts to throw for
integration
xlimits =[400.0,700.0] # The domain we want to integrate over

ylimits =[0.0,40.0E3] # the maximum of the function over this range

is "26E3

~ow

S IR R IR I |

[N

88
89
90

91

TotalArea = (xlimits[1] —xlimits[0]) *(ylimits[1]—ylimits[0])

I will use a loop method and vector method and check which is
faster

Lt0 = time. time ()

Loop method

countbelow=0

for i in range(Ndarts):
Generate a random x—y point in the range above
x= rnd.rand () *(xlimits[1] —xlimits [0])+xlimits [0]
y= rnd.rand () *(ylimits[1l]—ylimits [0])+ylimits [0]

if y<Blmb(x): # if it is below our function

countbelow+=1 # count it

plt.plot(x,y,’b.’) # plot it blue
else:

plt.plot(x,y,’ 'r.’) #otherwise plot it red

#pass # if you comment out the plot you need pass to have
something here

IntArea=float (countbelow)/float (Ndarts)*TotalArea # float function
keeps integer math from messing this up
Ltl = time.time ()

#Vector method

make arrays of random x—y points

Vt0 = time. time ()

xarr= rnd.rand (Ndarts) *(xlimits[1] — xlimits [0])+xlimits [0]
yarr= rnd.rand (Ndarts) *(ylimits [1] — ylimits [0])+ylimits [O]

BelowIndex=yarr<B_lmb(xarr) #create a logical array for who is
below the curve

countbelow2=np.sum(BelowIndex) # Trues count as 1, False is 0

IntArea2=float (countbelow2)/float (Ndarts)*TotalArea # float
function keeps integer math from messing this up

#make new figure
plt. figure ()
plt.plot (Plotx, B_lmb(Plotx), 'k’)

plt . plot (xarr [BelowIndex], yarr [BelowIndex],’b.) # plot it blue if
below

plt.plot(xarr [np.logical_-not (BelowIndex)],yarr[np.logical_not (
BelowIndex)],’r.’) #otherwise plot it red

Vtl=time. time ()

plt.xlabel (’Wavelength (nm)’)
plt.xlabel (’Energy (W/m"2 nm"—1 sr”"—1))

integrate with quad for comparison

7 # the quad function retruns both the result and an estimate of the

error

VisE, VisErr=integ.quad(B_.lmb, 400, 700)

Compare answers
print (’Quad\tMonte Carlo 1\tMonte Carlo 27)

92

93

95

96

98

print (7 {:0.3E}\t{:0.3E}\t{:0.3E}’.format (VisE,IntArea ,IntArea2))
print (77)

print (’Speed check (s)’)

print (’Loop\tVector\tDifference ’)

Ldt=Lt1-Lt0

7 Vdt=Vt1-Vt0

print (7 {:0.3f}\t{:0.3f}\t{:0.3f}" .format (Ldt,Vdt,Ldt—Vdt))

In the above example I do the Monte-Carlo integration as a loop and as a
vector process. In my test I found the vector method was ninety times faster.
I commented out all the plotting commands to try and be fair to the loop in

my test.

	Midpoint and Quadrature
	Monte-Carlo

