Fast Fourier Transform

Carver J. Bierson

July 17, 2017

May processes in nature repeat on some timescale. As scientists, we want to
be able to take a data set and ask, ”is there a periodic signal in here?” Fourier
transforms are one way to answer that question and are used in a wide variety
of other applications (including image compression)

1 Some Theory

Let us say we have some data, h(t). This could be a sound recording, the
amount of COs in the atmosphere, or temperatureﬂ It is true that for any
continuous signal, it can be represented as an infinite sum of sine and cosine
functions with different amplitudes and wavelengths. This can represented by
the Fourier transform

no) = [m(e m

= /Oo H(w) (cos(2m ft) — isin(27 ft)) df (2)

Here f is 'the angular frequency. This frequency can be related to the period of
a wave via .

P= 7 (3)

H(f) is a complex function that contains information about the amplitude and
phase of each sine/cosine in the summation. If we have our data in the time
domain we can solve for this function via

H(f) = / b h(t)e*™fitdt (4)

— 00

Similar to when we did numerical integration we are going to approximate
these integrals by a sum.

N-1
Hn = Z hkeQﬂikn/N (5)
k=0
1 N—-1
_ —27mikn/N
h = N Z Hye (6)

n=0

1 We could even consider a spatial signal, h(z), like topography.

N

Instead of integrating over all time we will also be limited to summing over our
data points. In doing so we have some limitations that arise. Because we are
approximating our domain by a set of periodic functions, we have to assume
our data set repeats before the start and after the end. In reality this is often
not the case. Because of this we usually only want to interpret signals in our
data that are much smaller than our domain.

There are limits on the highest and lowest frequency that the FFT will
return based on your data itself. Lets say our data is evenly spaced in time at
a regular interval of A¢. The highest frequency (shortest period) signal that we
can resolve is known as the Nyquist critical frequency.

1
= 3A; (7)

This equation is saying that you need at least 2 points per period to know that
there is a periodic signal. The lowest frequency signal we can resolve depends
on the total time interval we sample for,

Je

1

fL: m (8)

This is saying we need at least half of a wavelength within our domain in order
to resolve it. The FFT will always return a value with f = 0. H(f = 0) is
always the mean of our data points.

There is much more subtly in using FFTs that are beyond the scope of this
class.

2 FFT in python

Let us make a data set where we know the input frequencies, and try to recover
those.

import matplotlib.pyplot as plt
import numpy as np

5 time= np.linspace (0,100) # array of time values (s)

6

8

9

10

dt= time[l] —time [0] # find timestep

input_f=[1/50.,1/20. | # list of input frequencies
input-A=[5,20] # list of input amplitudes

11 # build signal array

12
13
14

15

16

signal = Oxtime

for i in range(len(input_f)):
I will only do sins but you could also do cosines and add a
phase shift
signal+=input_A [i]*np.sin (2+np. pixinput_f[i]*time)

17 # do fft

18

H=np. fft . fft (signal)

10 # calculate frequencies for each H(f)

20

o

[S I CI

3
1

f=np. fft . fftfreq (len (time), dt)

1
2 # Plot FFT power spectrum

plt. figure ()

)

25 plt.plot(f, np.absolute(H), ’rs’, label="fft’) # H is complex so we
will plot the absolute

27 plt.xlabel (' f

25 plt.ylabel (7 |H

30 # invert FFT to recover the original signal
31 yifft=np. fft.ifft (H) # recover our original signal

33 # Plot original signal and ifft result
342 plt.figure ()

36 plt.plot (time, signal, ’r—’, label="Original’)
37 plt.plot(time, yifft, ’sb’, label=’Inverted’)

30 plt.xlabel(’time (s)’)
w0 plt.ylabel ('h(t)”)
41 plt.legend ()

Now lets take a square wave (a box in the time domain), do an FFT, and
then slowly reconstruct the square wave a few components at a time.

1

> import matplotlib.pyplot as plt
3 import numpy as np
4

5 time= np.linspace (0,100, 100) # array of time values (s)
6 dt= time[l] —time [0] # find timestep

s # Make signal the same size and time, but 0 everywhere
signal = Oxtime

10 # make the signal equal to 1 between 30<t<70

11 signal [np.logical_and (time <70, time>30)]=1.0

12

13 # Do FFT

14 He=np . fft . fft (signal)

15 f=np. fft . fftfreq (len(time), dt)

16

e

17

15 plt.figure ()

20 plt.plot(f, np.absolute(H), ’'rs—’, label="fft’) # H is complex so
we will plot the absolute

22 plt.xlabel (’f
23 plt.ylabel (|

25 # sort H(f) values (and f) by the amplituide of H(f)
26 # Filp the index so I have the largest values first
27 sort_-index=np. flipud (np. argsort (np. absolute (H)))

20 H_sort=H[sort_-index] # sort the H(f)’s

30 f_sort=f[sort_index] # sort the f’s

33 plt.figure ()

35 plt.plot(time, signal, ’k—’, label=’Original’)

3s N_stops=[1,2,3,5,10, 50] # steps to stot at and print
30 for N in N_stops:

To do this I am going to 0 out all values that are not in the
N largest
Because of the symmetry in H(f) I will keep 2N values
H_temp=H.copy () # copy ensures we do not change H
for i in range(len (H)):
if not(H_temp[i] in H_sort[:2xN]):
H_temp[i]=0

yifft=np. fft.ifft (H-temp) # recover our original signal
plt.plot (time, yifft, ’'—’, label="{:d} feqs’.format(N))

plt.xlabel (’time (s)’)
plt.ylabel ("h(t))

plt.legend ()

Note here that as we add more frequency components the area overshoot-
ing our box shrinks, but the amplitude of the offshoot does not. No matter
how many frequencies you use this overshoot will have approximately the same
amplitude. This is known as Gibb’s overshoot if you want to lookup more on
this.

	Some Theory
	FFT in python

