
Fast Fourier Transform

Carver J. Bierson

July 17, 2017

May processes in nature repeat on some timescale. As scientists, we want to
be able to take a data set and ask, ”is there a periodic signal in here?” Fourier
transforms are one way to answer that question and are used in a wide variety
of other applications (including image compression)

1 Some Theory

Let us say we have some data, h(t). This could be a sound recording, the
amount of CO2 in the atmosphere, or temperature1. It is true that for any
continuous signal, it can be represented as an infinite sum of sine and cosine
functions with different amplitudes and wavelengths. This can represented by
the Fourier transform

h(t) =

∫ ∞
−∞

H(f)e−2πfitdf (1)

=

∫ ∞
−∞

H(ω) (cos(2πft) − i sin(2πft)) df (2)

Here f is the angular frequency. This frequency can be related to the period of
a wave via

P =
1

f
. (3)

H(f) is a complex function that contains information about the amplitude and
phase of each sine/cosine in the summation. If we have our data in the time
domain we can solve for this function via

H(f) =

∫ ∞
−∞

h(t)e2πfitdt (4)

Similar to when we did numerical integration we are going to approximate
these integrals by a sum.

Hn =

N−1∑
k=0

hke
2πikn/N (5)

hk =
1

N

N−1∑
n=0

Hne
−2πikn/N (6)

1 We could even consider a spatial signal, h(x), like topography.

1

Instead of integrating over all time we will also be limited to summing over our
data points. In doing so we have some limitations that arise. Because we are
approximating our domain by a set of periodic functions, we have to assume
our data set repeats before the start and after the end. In reality this is often
not the case. Because of this we usually only want to interpret signals in our
data that are much smaller than our domain.

There are limits on the highest and lowest frequency that the FFT will
return based on your data itself. Lets say our data is evenly spaced in time at
a regular interval of ∆t. The highest frequency (shortest period) signal that we
can resolve is known as the Nyquist critical frequency.

fc =
1

2∆t
(7)

This equation is saying that you need at least 2 points per period to know that
there is a periodic signal. The lowest frequency signal we can resolve depends
on the total time interval we sample for,

fL =
1

2N∆t
(8)

This is saying we need at least half of a wavelength within our domain in order
to resolve it. The FFT will always return a value with f = 0. H(f = 0) is
always the mean of our data points.

There is much more subtly in using FFTs that are beyond the scope of this
class.

2 FFT in python

Let us make a data set where we know the input frequencies, and try to recover
those.

1 import matp lo t l i b . pyplot as p l t
2 import numpy as np
3

4

5 time= np . l i n s p a c e (0 ,100) # array o f time va lue s (s)
6 dt= time [1]− time [0] # f i nd t imestep
7

8 i n pu t f =[1/50 . , 1/20 .] # l i s t o f input f r e qu en c i e s
9 input A =[5 ,20] # l i s t o f input ampl itudes

10

11 # bui ld s i g n a l array
12 s i g n a l = 0∗ time
13 f o r i in range (l en (i npu t f)) :
14 # I w i l l only do s i n s but you could a l s o do c o s i n e s and add a

phase s h i f t
15 s i g n a l+=input A [i]∗ np . s i n (2∗np . p i ∗ i n pu t f [i]∗ time)
16

17 # do f f t
18 H=np . f f t . f f t (s i g n a l)
19 # ca l c u l a t e f r e qu en c i e s f o r each H(f)
20 f=np . f f t . f f t f r e q (l en (time) , dt)
21

22 # Plot FFT power spectrum
23 p l t . f i g u r e ()
24

2

25 p l t . p l o t (f , np . abso lu t e (H) , ’ r s ’ , l a b e l=’ f f t ’) # H i s complex so we
w i l l p l o t the abso lu t e

26

27 p l t . x l ab e l (’ f (1/ s) ’)
28 p l t . y l ab e l (’ |H(f) | ’)
29

30 # inve r t FFT to recove r the o r i g i n a l s i g n a l
31 y i f f t=np . f f t . i f f t (H) # recove r our o r i g i n a l s i g n a l
32

33 # Plot o r i g i n a l s i g n a l and i f f t r e s u l t
34 p l t . f i g u r e ()
35

36 p l t . p l o t (time , s i gna l , ’ r− ’ , l a b e l=’ Or i g i na l ’)
37 p l t . p l o t (time , y i f f t , ’ sb ’ , l a b e l=’ Inver ted ’)
38

39 p l t . x l ab e l (’ time (s) ’)
40 p l t . y l ab e l (’h (t) ’)
41 p l t . l egend ()

Now lets take a square wave (a box in the time domain), do an FFT, and
then slowly reconstruct the square wave a few components at a time.

1

2 import matp lo t l i b . pyplot as p l t
3 import numpy as np
4

5 time= np . l i n s p a c e (0 ,100 , 100) # array o f time va lues (s)
6 dt= time [1]− time [0] # f i nd t imestep
7

8 # Make s i g n a l the same s i z e and time , but 0 everywhere
9 s i g n a l = 0∗ time

10 # make the s i g n a l equal to 1 between 30<t<70
11 s i g n a l [np . l o g i c a l a nd (time<70, time>30)]=1.0
12

13 # Do FFT
14 H=np . f f t . f f t (s i g n a l)
15 f=np . f f t . f f t f r e q (l en (time) , dt)
16

17

18 p l t . f i g u r e ()
19

20 p l t . p l o t (f , np . abso lu t e (H) , ’ rs− ’ , l a b e l=’ f f t ’) # H i s complex so
we w i l l p l o t the abso lu t e

21

22 p l t . x l ab e l (’ f (1/ s) ’)
23 p l t . y l ab e l (’ |H(f) | ’)
24

25 # so r t H(f) va lue s (and f) by the ampl i tu ide o f H(f)
26 # Fi lp the index so I have the l a r g e s t va lue s f i r s t
27 s o r t i nd ex=np . f l i p ud (np . a r g s o r t (np . abso lu t e (H)))
28

29 H sort=H[s o r t i nd ex] # so r t the H(f) ’ s
30 f s o r t=f [s o r t i nd ex] # so r t the f ’ s
31

32

33 p l t . f i g u r e ()
34

35 p l t . p l o t (time , s i gna l , ’ k− ’ , l a b e l=’ Or i g i na l ’)
36

37

38 N stops =[1 ,2 ,3 ,5 ,10 , 50] # s t ep s to s t o t at and pr i n t
39 f o r N in N stops :

3

40 # To do t h i s I am going to 0 out a l l va lue s that are not in the
N l a r g e s t

41 # Because o f the symmetry in H(f) I w i l l keep 2∗N va lues
42 H temp=H. copy () # copy ensure s we do not change H
43 f o r i in range (l en (H)) :
44 i f not (H temp [i] in H sort [: 2 ∗N]) :
45 H temp [i]=0
46

47 y i f f t=np . f f t . i f f t (H temp) # recove r our o r i g i n a l s i g n a l
48 p l t . p l o t (time , y i f f t , ’− ’ , l a b e l=’ { : d} f e q s ’ . format (N))
49

50 p l t . x l ab e l (’ time (s) ’)
51 p l t . y l ab e l (’h (t) ’)
52

53 p l t . l egend ()

Note here that as we add more frequency components the area overshoot-
ing our box shrinks, but the amplitude of the offshoot does not. No matter
how many frequencies you use this overshoot will have approximately the same
amplitude. This is known as Gibb’s overshoot if you want to lookup more on
this.

4

	Some Theory
	FFT in python

