
Code Flow

Carver J. Bierson

June 26, 2017

The power of computer comes from their ability to perform many many
calculations and make decisions about what to do next. The main method for
doing these repeat calculations is loops with logic statements

1 Conditionals

The other key programming tool is conditional statements. This is usually
done via if-else statements. An if statement works by checking some logical
statement. If that statement is true, it does the indented section of code. i.e.

1 a=4 # Def ine a
2 i f a<0: # I s a l e s s than 0?
3 pr in t (’ a i s negat ive ’) # i f so wr i t e t h i s
4 e l i f a==0: # Does a equal 0?
5 pr in t (’ a i s 0 ’) # I f so do t h i s
6 e l s e : # t h i s happens i f none o f the prev ious statements are t rue
7 pr in t (’ a i s p o s i t i v e ’)

You can nest if statements within one another for more complex conditions

1 a=4 # Def ine a
2 a=40 # Def ine b
3 i f a<0: # I s a l e s s than 0?
4 i f b<0: # I s b l e s s than 0?
5 pr in t (’ a and b are negat ive ’) # i f so wr i t e t h i s
6 e l i f b==0: # Does b equal 0?
7 pr in t (’ a i s negat ive , b i s 0 ’) # I f so do t h i s
8 e l s e : # t h i s happens i f none o f the prev ious statements are

t rue
9 pr in t (’ a i s negat ive , b i s p o s i t i v e ’)

or you can do the same thing with more complex logic checks

1 a=4 # Def ine a
2 a=40 # Def ine b
3 i f a<0 and b<0: # are a and b both negat ive
4 pr in t (’ a and b are negat ive ’) # i f so wr i t e t h i s
5 e l i f a<0 and b==0: # Does a equal 0?
6 pr in t (’ a i s negat ive , b i s 0 ’) # I f so do t h i s
7 e l i f a<0 and b>0: # th i s happens i f none o f the prev ious statements

are t rue
8 pr in t (’ a i s negat ive , b i s p o s i t i v e ’)

Which of these two methods you use is up to you. I recommend that you
do whichever you think will make your code easier to read. Expressions are
evaluated in order of arithmetic (add, multiply, etc.), comparisons (less than,
greater than), logic (and, or).

1

Table 1: Common logic syntax
check if syntax
Equal to ==
Less than <

Greater than >
Less than or equal to <=

and and
or or
not not

a is member of b in

2 Loops

Loops allow you to repeat a task a set number of times (for loops) or until some
condition is met (while loops).

In python the basic for loop syntax is

1 # This loop p r i n t s out the numbers 0−4
2 f o r i in range (5) :
3 pr in t (’ { : d} ’ . format (i))

The way to think of this loop is as follows. range creates a list of 5 values,
[0,1,2,3,4]. i then takes on each of these values in order. The indented section
of code happens each time i takes on a new value. In this case it prints out the
value of i. After the loop finishes i will still have a value of 4.

Question: Is the following loop valid? If so what would it do?

1 f o r i in ’ He l l o ’ :
2 pr in t (i)

We can do the same thing using a while loop.

1 # This loop p r i n t s out the numbers 0−4
2 i=0
3 whi le i <5:
4 pr in t (’ { : d} ’ . format (i))
5 i+=1

Here we first have to give i a starting value. Each time through the loop i is
printed than we increment it by 1 (i+=1 is the same as i=i+1). Note if you are
not careful with while loops they may never break.

Question: Rewrite the above while loop so that it prints the same
values but finishes with i=4.

Question: Rewrite the hello loop above as a while loop.

3 Control statements

Sometimes you want to skip a value of a loop or leave the party early. For this
we have some syntax that is sometimes called control statements. break leaves
a loop entirely.

2

1 # This loop p r i n t s out numbers
2 f o r i in range (5) :
3 i f i >2:
4 break
5 pr in t (’ { : d} ’ . format (i))

will print

1 0
2 1
3 2

continue skips just that iteration of the loop

1 # This loop p r i n t s out numbers
2 f o r i in range (5) :
3 i f i ==3:
4 cont inue
5 pr in t (’ { : d} ’ . format (i))

will print

1 0
2 1
3 2
4 4

pass is usually used as placeholder when you are structuring code but haven’t
yet fleshed it out. Nothing happens when you call pass

1 # This loop i s i n v a l i d and w i l l cause an e r r o r
2 f o r i in range (5) :
3

4 # This loop i s va l id , but doesn ’ t do anything
5 f o r i in range (5) :
6 pass

4 Logical indexing

It is much faster in python to not loop over all variable in an array but instead
apply operations to via logical indexing. Logical indexing is using an array of
Boolean (True/False) values to select a subset of elements from an array (instead
of a start:end syntax).

1 >>> a=np . l i n s p a c e (1 , 10 ,10)
2 >>> a
3 array ([1 . , 2 . , 3 . , 4 . , 5 . , 6 . , 7 . , 8 . , 9 . , 1 0 .])
4 >>> a>5
5 array ([False , False , False , False , False , True , True , True ,

True , True] , dtype=bool)
6 >>> a [a>5]
7 array ([6 . , 7 . , 8 . , 9 . , 1 0 .])
8 >>> b=np . l i n s p a c e (10 ,1 , 10)
9 >>> b

10 array ([1 0 . , 9 . , 8 . , 7 . , 6 . , 5 . , 4 . , 3 . , 2 . , 1 .])
11 >>> np . l o g i c a l a nd (a>5,b>4)
12 array ([False , False , False , False , False , True , False , False ,

False , Fa l se] , dtype=bool)
13 >>> a [np . l o g i c a l a nd (a>5,b>4)]
14 array ([6 .])
15 >>> a [np . l o g i c a l a nd (a>5,b>4)]=−20
16 >>> a
17 array ([1 . , 2 . , 3 . , 4 . , 5 . , −20. , 7 . , 8 . , 9 . , 1 0 .])

3

5 Functions

When writing code you often have tasks you want to repeat in different parts
of the code. By writing functions you condense these repeat sections into one
place making debugging easier. Your code will also be more readable if you move
different sections into well named functions. Functions are also great because
if you write them well you can take a function from one project and use it in
another (even within this class).

1 # Def ine an add i t i on func t i on
2 de f add (a , b) :
3 r e turn (a+b)
4 # use our new func t i on
5 pr in t (add (7 , 2))

will print out 9. As written this function takes in two variables and returns
their sum. The user must always pass two, and only two, variables for this to
work. If I try to just type add(7) I get

1 Traceback (most r e c en t c a l l l a s t) :
2 F i l e ”<s td in>” , l i n e 1 , in <module>
3 TypeError : add () takes exac t l y 2 arguments (1 g iven)

We can write functions where some values are optional, i.e.

1 # Def ine an add i t i on func t i on
2 de f add (a , b=1) :
3 # This func t i on adds the two va lues a and b .
4 # I f only one value i s g iven i t increments the value by 1 .
5 r e turn (a+b)
6 # use our new func t i on
7 pr in t (add (7))

will return 8. If we pass to variables, like add(7,2) we overwrite the default
value and still get 9.

5.1 Returning multiple values

It is not uncommon to want to return multiple values from a function. To
understand how to do this in python it is import to talk about tuples. tuples
are similar to lists in that they can contain multiple elements of different types.
Tuples are defined by parentheses instead of brackets.

1 tup le1 =(5 , ’ h e l l o ’) # This c r e a t e s a new tup l e
2

3 pr in t (tup le1 [1]) # This should p r i n t h e l l o

Tuples are useful because they can be unpacked into multiple variables.

1 value1 , s t r i n g 1=tup le1 # unpack tup l e
2

3 pr in t (s t r i n g 1) # This should p r i n t h e l l o

This could be used for a coordinate transform function

1 import numpy as np
2 # Def ine a func t i on to go from ca r t e s i a n to po la r coo rd ina t e s
3 de f c a r t 2po l a r (x , y) :
4 r=np . sq r t (x∗∗2.0+y ∗∗2 .0)
5 theta=np . arctan (y/x)
6 r e turn (r , theta)

4

7

8 # use our new func t i on
9 r , theta=ca r t 2po l a r (1 . 0 , 1 . 0)

10

11 # Print out the r e s u l t s
12 pr in t (r)
13 pr in t (theta)

Note that you could capture all the returned values in their tuple form.

5.2 Variable scope

A function only knows about variables passed to it or defined within the func-
tion. This does mean that a variable within a function can have the same name
as variables outside the function and those can have different values at the same
time. An example is

1 # Def ine an add i t i on func t i on
2 de f SimplePrint5 () :
3 # This func t i on d e f i n e s a va r i ab l e a and p r i n t s i t
4 # This func t i on takes no arguments
5 a=5
6 pr in t (5)
7 # use our new func t i on
8 a=10
9 SimplePrint5 ()

will still print out 5 because the a in the function is separate from the value
of a outside the function. This said if you give two things the same name in a
different workspace have a good reason for doing so. The readability of your
code is important!.

5.3 Modules

In this class we have already used the built in functions from the numpy module.
It is often helpful to write your own modules with functions that you use in
multiple scripts. If you write set of functions in the file MyModule.py, you can
load them into another script using import MyModule as mm. Note the module
file must be in the same directory as your script file.

6 Classes

In python almost everything is an object. Objects have attributes (data values)
and methods (built in functions that act on the object). For this class we will
not be using custom classes very much but it is good to have a basic idea how
they work.

1 import numpy as np
2 # Def ine the c l a s s ” C i r c l e ”
3 c l a s s C i r c l e :
4 # This happens when a ” C i r c l e ” ob j e c t i s c r ea ted
5 de f i n i t (s e l f , x0=0.0 , y0=0.0 , r =1.0) :
6 # Note that op t i ona l va lue s are de f ined the same as r e gu l a r

f unc t i on s
7 s e l f . x0=x0 # C i r c l e x cente r
8 s e l f . y0=y0 # C i r c l e y cente r
9 s e l f . r=r # C i r c l e rad iu s

5

10

11 de f area (s e l f) : # t h i s i s a method that takes no inputs
12 # The area method p r i n t s out the area o f the c i r c l e
13 pr in t (2 . 0∗ np . p i ∗ s e l f . r ∗∗2)
14

15 # This method re tu rn s the xy l o c a t i o n o f po int on the c i r c l e at
the input radian

16 de f rad2cord (s e l f , rad ian) :
17 x=s e l f . x0+s e l f . r ∗np . cos (radian)
18 y=s e l f . y0+s e l f . r ∗np . s i n (radian)
19 r e turn (x , y)
20

21

22 # Now I w i l l use the c i r c l e c l a s s
23 Rad5Circle=C i r c l e (r=5) #x0 and y0 w i l l be t h e i r d e f au l t va lue s
24

25 pr in t (’ x0={: f } , y0={: f } , r={: f } ’ . format (Rad5Circle . x0 , Rad5Circle .
y0 , Rad5Circle . r))

26

27 Rad5Circle . area () # pr in t out area , Note s e l f i s automat i ca l l y
passed to methods

28

29 x1 , y1=Rad5Circle . rad2cord (np . p i /2 . 0) # x1 should=0, y1 should =5
30

31 pr in t (’ x1={: f } , y1={: f } ’ . format (x1 , y1))

7 Concluding thoughts

You now have all of the basic programming tools we will use in this class.
Numerical modeling is just the art of combining arrays, loops, and conditionals
in ways to solve problems. Next we will learn how to make these methods
interact with outside data (reading/writing data and making plots). After that
this course will be learning to apply these tools to different problems.

6

8 In Class Practice

The Fibonacci number of a value is the sum of the integers preceding it,

Fn = Fn−1 + Fn−2 (1)

F0 = 1, F1 = 1 (2)

• Write a loop that calculates Fibonacci numbers 1-10 and prints them.

• Write a function using your loop that calculates Fibonacci number n.

• Write a function that calculates Fibonacci number n recursively.

7

	Conditionals
	Loops
	Control statements
	Logical indexing
	Functions
	Returning multiple values
	Variable scope
	Modules

	Classes
	Concluding thoughts
	In Class Practice

