Basic Statistics ptl: Fitting

Carver J. Bierson

February 2, 2018

Caveat: In this class I will give you some simple statistical tools and teach
you how to use them. This is not a statistics course so we will not go into
much detail about when different measures are meaningful. Different statistical
techniques and measure often have different assumptions built into them that
we will only touch on. When applying these tools on real data make sure that
you understand your statistical tools and they apply to your data.

Later in the course we will revisit many of these topics to discuss goodness
of fit and choosing the correct model for your data.

1 Random numbers

When doing statistics and testing statistics functions it is helpful to be able to
generate random data. For this class we will use the numpy.random| module.
This module contains functions to draw values from many different distributions.
Below is a basic example of generating some random data.

import matplotlib.pyplot as plt
import numpy.random as rnd

set_uni=rnd.random (int (1E3)) # generate 1000 random uniformly
distributed values

set_norm=rnd.randn (int (1E3)) # generate 1000 random normally

distributed values

Plot data
plt. figure ()

3 Nbins=50 # number of bins in histogram

5 plt.subplot(121) # subplot for uniform data

plt.title (’Uniform’)
plt.hist (set_-uni, Nbins, facecolor=’green’)

plt .subplot (122)
plt.title (’Normal’)
plt . hist (set_-norm , Nbins, facecolor=’"red’)

plt .show ()
Listing 1: Create and plot a histogram of random points

https://docs.scipy.org/doc/numpy/reference/routines.random.html

2

6

1.1 Seeds

Computers can’t generate truly random numbers. Instead they use sophisti-
cated mathematical formulas that simulate random values. As an aside gener-
ating truly random values is a large area of research in computer science with
applications in casinos and security. Most random number generation relies on
a seed value. If this seed is the same, you will always get the same values. If
you include

rnd . seed (1)

in the code above (before calling random) it will always produce the same ’'ran-
dom’ numbers. Python seems to be good and using a changing quantity to
supply this seed so you shouldn’t need to worry about this too much (If you
just run the same code twice you get different values). If you do find yourself in
a case where you need a new seed using the least significant figure of the time
is a common method.

2 Descriptive Statistics

Numpy gives us easy to use functions to calculate many of basic statistical
properties of a data set. In addition to mean, median, and standard deviation
numpy will also calculate data value quantiles and percentiles. A percentle gives
the data value where X percent of the data is less than that value. For example
the 25th percentile is the value that is larger than 25% of the data and the
50th percentile is the median. Percentiles are more robust to outliers than the
standard deviation.
Below I use a random data set as an example.

import numpy as np
import numpy.random as rnd

set_.norm=rnd.randn(int (1E3)) # generate 1000 random normally
distributed values

print ('The Mean is {:0.2f}’.format (np.mean(set_norm))) # Print the
data mean

print (’The median is {:0.2f}’.format (np.median(set-norm))) # Print
the data median

print ('The standard deviation is {:0.2f}’.format(np.std(set_norm)))
Print the data standard deviation

print (’The maximum value is {:0.2f}’ .format(np.max(set_norm))) #
Print the maximum value

5 print (’The 75th and 99th data percentile are {:0.2f}, {:0.2f}".

format (
np.percentile (set_norm ,75) ,
np. percentile (set_norm ,99))) # Print the data mean

Listing 2: Create and plot a histogram of random points

1
2
3

1

10
11
12
13
14
15

16

N

NN NN NN
b

w oo

1
5

6

3 Fitting

Often with data we are interested in fitting some sort of model to that data and
evaluating the quality of fit. Almost all model fitting is based on minimizing
the squared error,

E= Z(p(i’?z‘) - Z/z‘)z (1)

where y; is one of our data points and p(z;) is some model evaluated at the x
value that corresponds to y;. I will also show some basic error estimates for fits.
Note that often the error estimates that are return are under-estimates of the
real error.

4 Linear fits

Lets start with the simple example of trying to fit a line.

import matplotlib.pyplot as plt
import numpy as np
import numpy.random as rnd

Generate some fake data
Datax=rnd .random (50) *10 # start with 50 uniform points

Set the ’true’ solution to y=3%x—2
Datay= 3xDatax—2

add noise with a standard deviation of 2 to the data

Datay+=2«rnd .randn (50)

find best linear fit
fit=np. polyfit (Datax,Datay,1) # 1 is the power of the fit , 3 would
be a cubic fit

print (fit)

Plotx=np.linspace (0,10) # create an x array for plotting the fit
Ploty=np. polyval (fit ,Plotx)

plt. figure ()
plt.plot (Datax,Datay, ’b. ’,label="Data’) #plot data as points
plt . plot (Plotx ,Ploty, 'r—’, label="Fit’) #plot data as points

plt.legend ()

In the example above I start with the equation y = 3z —2. When I ran the code
I got a fit of y = 3.1x — 2.6. We would like to put error estimates on those fit
values to evaluate if we are really doing a good job. For this we simply need to
return more values from polyfit. If we return the covariance matrix from polyfit,
the diagonal elements of that matrix give the estimated standard deviation of
each paramter. cov matrix contains o2, not o. Should be corrected

import numpy as np
import numpy.random as rnd

Generate some fake data
Datax=rnd .random (50) *10 # start with 50 uniform points

7 # Set the ’true’ solution to y=3xx—2
s Datay= 3xDatax—2

10 # add noise with a standard deviation of 2 to the data
Datay+=2rnd .randn (50)

« # find best linear fit

5 fit ,covariance=np. polyfit (Datax,Datay,1,cov=True) # return
covariance matrix

16

17 print (’Fitting model y=mxtb’)

s print ('m={:0.2f}+4+/—{:0.2f}’ . format (fit [0] ,2*% covariance [0,0]))

1o print (’b={:0.2f}+/—{:0.2f} . format (fit [1],2xcovariance[1,1]))

-

When I ran this code I got. Your results will vary a bit each time because of
the random arrays

1 Fitting model y=mxtb
2> m=3.004+/—0.02
3 b=—2.39+4+/-0.61

4.1 Log space fitting
Many equations in science take the form

y = Ae" (2)
or

y = Ax® (3)

Lets say we want to solve for the parameters A and b. We can solve both of
these types of equations through a simple linearization. For both equation I will
take the log of both sides and use some log algebra.

y = Ae (4)
In(y) = In(Ae") (5)
In(y) = In(A) + bz (6)
(7)
and
y = Az (8)
In(y) = In(Aa?))
In(y) = In(A) + bIn(z) (10)

Below is a code solving the second form.

1 import matplotlib.pyplot as plt
> import numpy as np

3 import numpy.random as rnd

4

5 # Generate some fake data
6 Datax=14rnd.random (50)*10 # start with 50 uniform points

8

9

10

11

w o

Set the ’true’ solution to y=3%x"2.5
Datay= 3xDatax*%x2.5

#move to logspace
InDatay=np. log (Datay)
InDatax=np. log (Datax)

add noise in the logspace with a standard deviation of 0.5 to the
data
InDatay+=0.5%rnd . randn (50)

find best linear fit
fit ,covariance=np. polyfit (InDatax ,InDatay ,1,cov=True) # return
covariance matrix

A=np.exp (fit [1])

b=fit [0]
Astd=np.exp(covariance [1,1])
bstd=covariance [0,0]

print (’Fitting model y=Ax"b’)

print ('A={:0.2f}+/—{:0.2f} . format (A,2xAstd))
print (’b={:0.2f}+/—{:0.2f}’.format (b,2xbstd))

Plotx=np.linspace (1,11) # create an x array for plotting the fit

; Ploty=np.exp(np.polyval(fit ,np.log(Plotx)))

Plot the data in log space
plt. figure ()

7 plt.plot (InDatax ,lnDatay, 'b.’,label="Data’) #plot data as points in

log space

plt . xlabel ("In (
plt.ylabel (’In (

<M
NN
-

plt.legend ()

plot in linear space
plt.figure ()

; plt.plot(Datax,Datay, ’b.’,label="Data’) #plot data as points

plt.plot (Plotx ,Ploty, 'r—’, label="Fit’) #plot data as points

plt.xlabel (’x")
plt.ylabel(’y’)

plt.legend ()

When I ran this code I got.

Fitting model y=Ax"b
A=3.69+/-2.09
b=2.41+4+/-0.03

Nicely this is consistent with my input model.

4.2 Non-linear fitting

Sometimes you want to fit a non-linear model to your data. Here there is
no analytically solution to getting a fit. That said there are many numerical
methods that can get these fits through iteration (think loops).

import matplotlib.pyplot as plt
import numpy as np
import numpy.random as rnd

def sinfunc(x, p0, pl, p2, p3):
return p0 + pl*np.sin(p2*(x—p3))

Generate some fake data
Datax=rnd .random (50) *2*np. pi # start with 50 uniform points

Set the ’true’ solution to y=2%sin(x—0.1)
Datay= 2%np.sin (Datax—0.1)

; # add noise with a standard deviation of 0.25 to the data

Datay+=0.25%rnd . randn (50)
from scipy.optimize import curve_fit # load non—linear fitting
function

p, pcov = curve_fit (sinfunc, Datax, Datay) # perform fit

p contains the fit
pcov contains the covariance matrix

print result

print (’Fitting model y=p0 + plx*sin (p2*(x—p3))’)

print ('p0={:0.2f}+/—{:0.2f}’.format (p[0],2%pcov[0,0]))
print ('pl={:0.2f}+/—{:0.2f}’ . format (p[1],2*pcov[1l,1]))
print ('p2={:0.2f}+/—{:0.2f}’.format (p[2],2%pcov[2,2]))
print ('p3={:0.2f}+/—{:0.2f} . format (p[3],2*pcov[3,3]))

Plotx=np. linspace (0,2%np.pi) # create an x array for plotting the
fit
Ploty=sinfunc (Plotx ,p[0] ,p[1],p[2],p[3])

plot Solution

plt. figure ()

plt.plot (Datax,Datay, ’b. ’,label="Data’) #plot data as points
plt.plot (Plotx ,Ploty, 'r—’, label="Fit’) #plot data as points

plt.xlabel (’'x")
plt.ylabel(’y’)

plt.legend ()

When I ran this code I got.

Fitting model y=p0 + pl*sin (p2*(x—p3))
p0=0.02+/—0.00
pl=2.05+/-0.01
p2=1.00+/—0.00
p3=0.05-+/—0.01

The fit values are fairly good but the error estimates are clearly too low. This is
not uncommon for fitting routines so be careful how you interpret your results

(and other peoples).

4.3 Spline fitting and interpolation

Sometimes you are less interested in fitting a physical model and just need to
interpolate between data points. For this spline curves are often a good solution.

In the example below I sparsely sample a sin curve, then compare a linear and
spline interpolation.

import matplotlib.pyplot as plt
import numpy as np

Sample a sin curve

Datax=np. linspace (0,2*np.pi,4) # start with 50 uniform points
Create a complex y data set

Datay= 2x*np.sin (Datax—0.1)+2«Datax

import scipy.interpolate as interp

Plotx=np.linspace (0,2+*np.pi,100) # create an x array for plotting
the fit

Lineary=np.interp (Plotx , Datax ,Datay)
Spliney=interp .spline (Datax,Datay, Plotx)
Truey= 2%np.sin (Plotx —0.1)+2+«Plotx

plot Solution
plt . figure ()

plt.plot (Plotx ,Truey, ’b—’, label="True Fit’)
plt.plot (Plotx ,Lineary , 'r—’, label=’Linear Fit’)
plt.plot (Plotx ,Spliney , 'g—’, label=’Spline Fit’)

plt . plot (Datax,Datay, 'b.’,label="Data’) #plot data as points

plt.xlabel(’x")
plt.ylabel(’y’)

plt.legend ()

Note that spline fits tend to assume things are very smooth. If your data is
not smooth this is not going to give you a good interpolation!

	Random numbers
	Seeds

	Descriptive Statistics
	Fitting
	Linear fits
	Log space fitting
	Non-linear fitting
	Spline fitting and interpolation

